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MEMORANDUM 
 
 
TO: Tarboton, Kenneth, Ph.D., P.E., Director, Regional Modeling Division 
 
THROUGH: Luis Cadavid, Ph.D., P.E., Chief Hydrologic Modeler 
 
FROM: Alaa Ali, Ph.D., P.E., Lead Hydrologic Modeler 
 
DATE: November 8, 2004 
 
SUBJECT: A New Rainfall Driven Formula to Predict More Natural Flows to the 

Everglades’ Shark River Slough  
 
The following is an executive summary of the project whose title is the subject of this 
memorandum.  The detailed technical report is also attached. 

 
EXECUTIVE SUMMARY 

 
The Rainfall Driven Plan, RDP, is a key component of several of the alternatives 

in the 1992 GDM for Modified Water Deliveries to ENP. The goal of the RDP is to 
improve the amount, timing and distribution of flow to the Shark River Slough, the main 
waterway of the ENP.  An essential component of the RDP is Rainfall Driven Formula, 
RDF, to provide prediction of natural system flow in response to real time weather 
conditions. The existing RDF was developed in 1985 and since then has been in use by 
South Florida Water Management District (SFWMD) and United States Army Corps of 
Engineers (USACE). The 1992 GDM for Modified Water Deliveries to ENP 
recommends that “as additional knowledge is gained through experience with the interim 
operating plan and data collection, subsequent changes to the operating plan should be 
made, as appropriate”.  With the Combined Structural and Operational Plan of the C-111 
and Modified Water Delivery projects, CSOP, coming online, it is desired to carry out 
this recommendation by revisiting the existing RDF for possible improvements. 
 

Over the past decade there has been a great deal of improvement of systems 
understanding, data acquisition, and scientific evolution in statistical techniques. In this 
study, these improvements were exploited to develop a new RDF considering a nonlinear 
system, using 6 rainfall stations, and one PET station as input (predictors) to model the 
Natural System Model flow to the Shark River Slough. 

 
Input data were partitioned into a modeling period (1965-1989) and validation 

period (1990-2000). The modeling period was used to develop the model, while the 
validation period was used to test the model.  Principal component analysis was applied 
to the modeling set to simplify the data.  A feedforward Levenberg-Marquardt 
backpropagation Artificial Neural Network with one hidden layer and one output layer 
was adopted.  The network architecture and training parameters were identified for ANN 
training.  A set of 5000 ANN training and validation simulations for different network 
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parameter values were performed to select an optimal set of weights and biases and to 
provide quantification of model uncertainty.  The resulting formula produced 88% 
correlation for both the development and validation periods.  Also, the formula provides 
good prediction during the validation period where the hydrologic conditions are 
significantly wetter than those of the modeling period.  Complete model formulation, and 
results including model uncertainty are presented.  Model parsimony, optimal ANN 
parameterization, effective data selection, and real time uncertainty quantification are 
discussed. 
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A New Rainfall Driven Formula to Predict 
More Natural Flows to the Everglades’ Shark River Slough 

  
 

Alaa Ali, PhD, PE 
 

South Florida Water Management District 
Regional Modeling Division 

Office of Modeling 
 
 

1) INTRODUCTION 
 

The goal of the Rainfall Driven Plan, RDP, is to improve the amount, timing and 
distribution of flow to the Shark River Slough, the main waterway of the ENP.  To 
achieve this goal, a sound prediction of natural system flow in response to real time 
weather conditions is essential. The prediction tool of the current RDP, known as the 
Rainfall Driven Formula, RDF, was developed in 1985 and since then has been in use by 
South Florida Water Management District (SFWMD) and United States Army Corps of 
Engineers (USACE).  The reader is referred to Technical Publication 89-3 for full details 
about the RDP and RDF currently implemented today. With the Combined Structural and 
Operational Plan of the C-111 and Modified Water Delivery projects, CSOP, coming 
online, it is highly desirable to revisit the existing RDF for possible improvements.  
 
 The existing RDF was developed based on hydrologic data of the Everglades 
system during the period of record 1941-1952.  This period represented an optimal trade 
off between Everglades meteorological data monitoring and acquisition on one side and 
South Florida urbanization and development on the other side.  Prior to that period 
meteorological data were scarce while post that period there was a significant alteration 
of the flow to SRS due to the completion of the levee along the eastern side of the 
Everglades.  The current formula was developed based on a linear system assumption 
using 10 rainfall stations, three Evapotranspiration stations and considering ten week 
lags.  
 
 With the availability of more data, advanced statistical methods, and 
computational technologies, it is desirable to develop a new rainfall formula that reflects 
our improved understanding of the system and take advantage of the new concept of the 
South Florida natural system evolved through the Natural System Model, (NSM).  The 
new RDF is developed assuming nonlinear system, using 6 rainfall stations, and one 
evapotranspiration station as input (predictors) to model the NSM flow to the Shark River 
Slough.  A comparison between the important aspects of the old and the new formulas is 
given in Table 1.  
 
 This memorandum provides a complete presentation of the development, 
validation, and implementation of the new RDF.  A description of the study area and data 
locations is first provided, followed by a detailed presentation of the RDF methodology.  
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Detailed model results are then presented followed by a project summary and 
recommendations. 
 
Table 1. Comparison between selected aspects of the existing and the new RDFs 
Point of 
Comparison 

Existing Rainfall Driven Formula New Rainfall Driven Formula 

Modeling 
period of record 

1941-1952 1965-1989 

Validation 
period of record 

7/1985 – 7/1987 (two year field test 
of the rainfall plan) 

1/1990-12/2000 (formula is 
tested to predict NSM flow) 

Input data 10 rain, 3 ET 6 rain, 1 ET 
Modeled output Observed flow in a partially drained 

system 
Simulated flow by Natural 
System Model 

Time Lag 10 weeks 6 weeks 
Assumption Linear System Non linear system 
Data location 
contribution 

Lumped Distributed to each individual 
data location 

 
2) PROJECT AREA AND DATA 

  
Figure 1 depicts the area of interest and the data locations considered in this 

study. Rainfall and PET stations are located in the Water Conservation Areas.  In a 
natural system, Rainfall in the WCAs generates sheet flow across the Tamiami Trail into 
the ENP. 
 
2.1) Input Data 
 Ten rainfall stations and one potential Evapotranspiration station were initially 
selected for this analysis (Table 2 and Figure 1.) The station selection was based on two 
criteria: 1) potential relevance to the flow prediction, and 2) current active data 
acquisition.  The period of record covers the period 1965 through 2000.  Meeting the 
above two criteria posed the dilemma of not finding active and relevant stations during 
the period of record 1965-2000.  To overcome this dilemma and to prepare a sound 
rainfall data set, the following procedure was adopted: 

1) Identify stations by name and location that meet the above two criteria regardless 
of the period of record. 

2) Extract the corresponding daily rainfall from the existing data set previously used 
in the SFWMD models SFWMM and RSM.  Note that this data set had already 
undergone a through QA\QC process. 

3) Identify the SFWMM grid cell row and column corresponding to each rainfall 
station. 

4) For each station, fill all missing data from the corresponding SFWMM cell 
 

2.2) Flow Data 
 In this study it is desired to model pre-drainage flow across Tamiami Trail to SRS 
as flow target.  Since historical data to support this effort is not available, the Natural 
System Model simulated flow data were used. 
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Figure 1.  Rainfall driven formula study area with the data locations 
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Table 2.  Information on Rainfall and PET stations considered for this study.  
 Rainfall  PET 

Station 3A-36 S140 S336 3A-S 3A-SW 3A-NW S12D 3A-NE 3AS3W3 S9 3AS3WX 

Dbkey 16175 16581 16713 HC941 JA344 LA365 LS269 LX283 M6888 16607 OH515 

ROCO1 37,28 36,16 23,27 33,21 30,16 40,18 23,21 40,23 25,18 32,28 N/A 
Beginning 
of POR2 1/95 1/91 10/95 4/98 2/99 5/00 7/00 8/00 5/00 1/91 4/2000 

Boldface  entries represent the final selection 
1  Row and Column of the SFWMM grid. 
2  Data prior to the beginning of POR date do not exist and hence data from the corresponding ROCO is used. 
 

 
3) DEVELOPMENT OF RAINFAL DRIVEN FORMULA 

 
The development of the RDF is presented in the following four subsections.  1) 

Data preparation and partition, 2) Data transformation using principal component 
analysis, 3) Artificial Neural Network, ANN, Parameterization, and 4) Development of 
flow prediction model. 
  
3.1) Data set preparation 
 

The input and flow data presented in the previous section were used to develop, 
verify and validate the RDF.  Numerous combinations of rainfall stations were used in 
early model development efforts to pick a near optimal set of rainfall stations based on 
preliminary model performance.  Based on this exhaustive analysis, not presented here, 
data selection was narrowed down to six rainfall stations and one PET station (Table 2 
boldface entries, and Figure 1).   

 
Daily data were converted into weekly data and were divided into two sets: 

modeling set (1965-1989) and validation set (1990-2000).  Each time series of the 
modeling data set is standardized to zero mean and unity standard deviation (i.e., 
subtracting its respective mean and dividing by the standard deviation).  Given week t, an 
entry in time series i, st,i, is standardized according to Equation 1:  

i

iit
it

s
x

σ
µ−

= ,
,         (1) 

Where: µi and σi are the modeling data mean and standard deviation for time series i.  
 
The mean and standard deviation for both data sets are presented in Table 3. 

Notice that the mean and standard deviation of the flow and rainfall are significantly 
higher in the validation period compared to those in the modeling period (see last row of 
Table 3.).  Such an increase represents a challenge during the model validation. 

 
The standardized modeling data set is further divided into development set 

(≈1965-1983), and verification set (≈1984-1989).  A typical vector of standardized data is 
denoted by X consisting of 22 elements as follows: 

• previous time step simulated flow target (1 entry) 
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• rain and PET values for first week lag (7 entries) 
• rain and PET values for second week lag (7 entries) 
• rain and PET average values over the third through the fifth week lag (7 

entries) 
 

Table 3. Mean and Standard deviation of the modeling and validation data sets 
  Flow 

Ac-ft/week 
PET 
inches 

S336 
inches 

3A-S 
inches 

3A-SW 
inches 

S12D 
inches 

3AS3W3 
inches 

S9 
inches 

Mean 20274 -1.13 1.00 0.84 0.91 0.96 0.90 0.91 Modeling 
Data “M” STD 18708 0.26 1.41 1.16 1.21 1.34 1.16 1.23 

Mean 33366 -1.10 1.09 1.24 1.04 1.09 1.09 0.98 Validation 
Data “V” STD 26751 0.26 1.53 1.64 1.43 1.52 1.46 1.28 
Mean Difference 
(V-M)/M 65% -3% 9% 48% 14% 14% 21% 8% 

 
 
3.2) Principal Component Analysis. 
 

Principal Component Analysis, PCA, is a technique that can be used to simplify a 
dataset.  It is a transform that chooses a new coordinate system for the data set such that 
the greatest variance by any projection of the data set comes to lie on the first axis 
(referred to as the first principal component), the second greatest variance on the second 
axis (referred to as the second principal component) and so on.  PCA is used to reduce the 
dimensionality in a data set while retaining those characteristics of the dataset that 
contribute to its variance as predictors by eliminating the later principal components.  
Another benefit of the PCA in the context of ANN, is the reduction, or even elimination, 
of the uncorrelated, or poorly correlated, signals that exist mostly in the later principal 
components.  Such a noise has an adverse impact on the ANN training.   

 
Given the 22 variables listed above and considering the modeling data set only, 

Figure 2 shows the percentage of variance explained by the first “n” components with “n” 
ranging from 1 to 21.  It is shown that the first 5 components explain 97.3% of the 
variance.  It was rather attractive at an early modeling stage to retain the first 5 
components of the data for the RDF development. While the results were not poor, there 
was no computation feasibility issue that would preclude a full use of the 22 variables.  
When the full 22 variables were used, result improvements were not significant.  Trial 
and error efforts showed significant improvements when the first 17 principal 
components (99.5% of the variability) were retained.  One reason for this improvement is 
the elimination of the white noise in the top 0.5% variability and the inclusion of the 
extra 2.2% (beyond 97.3% if first 5 PCs are considered) of the variability which retained 
important information for prediction.  Further insight is needed to rationalize these 
quantities which is beyond the scope of this document.  Whether or not this task is 
performed does not preclude the modeler from pursuing the formula based on the first 17 
components. 
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The principal component coefficient matrix P (22 X 17) based on the modeling 
data set is presented in Appendix A.  For week, t, the principal component vector Yt is 
obtained as: 

 
Yt = Xt * P.           (2) 
Note that Yt is a 1 X 17 one dimensional array. 
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Figure 2.  Percentage of variance explained by the principal components. 

 
 

3.3) Artificial Neural Network Parameterization 
 

3.3.1) Background 
 
Artificial Neural Networks, ANN, are mathematical models of human cognition 

(Govindaraju, 2000).  These models can be trained based on historical knowledge to 
perform a specific task where such knowledge is not available. They are typically 
composed of three parts: inputs, one or many hidden layers, and an output layer. Hidden 
and output neuron layers include the combination of weights, biases, and transfer 
functions. A neuron on a given layer is a hub that receives weighted contributions from 
the preceding layer’s neurons and it sends weighted contributions to the succeeding 
layer’s neurons.  The weights are connections between neurons on one layer and another 
while the transfer functions are linear or nonlinear algebraic functions. When a pattern is 
presented to the network, weights and biases are adjusted so that a particular output is 
obtained. The ANNs provide a learning rule for modifying their weights and biases.  
Backpropagation algorithm is the most used learning rule in hydrologic applications 
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using ANNs.  It is a generalization of the least mean square (LMS) algorithm to multiple-
layer networks and nonlinear differentiable transfer functions. 

 
A satisfactory level of ANN training is the one that results in a good network 

generalization (i.e., satisfactory network performance on input that was not part of the 
training).  The ANN architecture parameters are the number of hidden layers, the number 
of hidden nodes, type of transfer functions, and the learning rule algorithm.  The ANN 
training parameters that govern the ANN optimization during training include learning 
rate, performance gradient, number of training iterations, training and verification data 
sizes and other numerous optimization parameters.  For full explanation of these 
parameters and the ANN architecture, the reader is referred to (Govindaraju, 2000, 
Wasserman 1989, and Rumelhart, Hinton and Williams, 1986) 

 
A parsimonious ANN is the one that produces the best fit (and the best generalization) 
with the simplest architecture and least number of parameters.  A major limitation to 
ANN is the inability to identify the unnecessary parameters/ weights in the solution.  In 
fact such identification would provide insight about the problem and help formulate an 
efficient ANN.  Although ANN parsimony did not receive a lot of research emphasis as 
the traditional parametric models did, there have been some research efforts of 
optimization techniques to identify an optimal parsimonious architecture/parameters.  
These methods exploit the structural redundancy of the ANN Architecture, parameters, 
and or weights by means of trial and error techniques.  For a review of these methods the 
reader is referred to (Sexton et. al., 2004, Abrahart et. al., 1999, Yao, and Liu 1997 and 
Bossley et. al., 1995) 

 
3.3.2) ANN for the Rainfall Driven Formula 

 
The selection of ANN Architecture and training parameters and weights is a trial 

and error process to choose from infinite number of combinations of the parameters 
presented above.  No formal technique was used to identify an optimal architecture.  In 
this study, a reasonable ANN performance has been consistently attained when 
feedforward Levenberg-Marquardt backpropagation network with one hidden layer and 
one output layer was used.  The hidden layer has 10 units (nodes) and the output layer has 
one unit (one output target time series).  Figure 3 provides a schematic diagram of the 
RDF formulation.  The trained network provides sets of weights and the terms for each 
layer as described below.  

 
3.3.3) ANN weights and bias terms 
 
 The ANN weights and bias terms represent the RDF parameters.  These 
parameters are initialized at the beginning of the ANN training.  During training, these 
parameters are iteratively adjusted according to the feedforward Levenberg-Marquardt 
backpropagation algorithm to minimize the network performance function which is the 
Mean Square Error, MSE, in this case.  . An optimal set of weights and biases are then 
used in the RDF formulation as follows (see Figure 3). 
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Hidden layer (10 nodes) 

The weight matrix Ω (17 X 10) and the bias vector Α (1 X 10) are presented in 
Appendix B.  The weighted contribution of vector Yt (1 X 17 vector) to hidden node, i, is 
given as:  

Ct,i = Tansig (Yt * ωi + αi)       (3) 
Where:i is an index for the hidden layer nodes (i = 1 -10)  

ωi is the ith vector (17 X 1) of Weight matrix Ω 
αi is ith element of the bias vector Α 
Tansig: Hyperbolic tangent sigmoid transfer function.  It is nonlinear 
differentiable function with input range ∞± and output range 1± . 
Ct,i  is a single value representing the contribution of vector Yt to node i of 
the hidden layer. 

Note: Yt * ωi is a product term of two vectors that produces a single value. 
 
Output layer (one node) 

The weight vector Θ (10 X 1) and the bias value β are presented in Appendix B. 
The weighted contribution of Ct,i to the output node:  
Dt,i = Ct,i * θi         (4) 
Where: 

θi is the ith entry of Weight vector Θ 
Dt,i  is a single value representing the contribution of nod i of the hidden 
layer to the output layer node. 

 
3.4) Flow target Estimation for week t+1 

 
The flow target for week (t+1), 1ˆ +tq , is estimated as (see Figure 3):  

qq

n

i
itit Dq µσβ +⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

=
+ *ˆ

1
,,1       (5) 

Where: 
n: number of hidden layer nodes (10 in this case) 
β:  the output layer bias term 
µq : Historical global mean of flow target time series of the modeling data set. 
σq : Historical global standard deviation of flow target series of the modeling data set. 

 
Substitute (4) in (5): 

qq

n

i
tq µσβθ +⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

=
+ * * Cˆ

1
iit,1       (6) 

 
Substitute (3) in (6): 

( ) qq

n

i
tt Tansigq µσβθα +⎟

⎠

⎞
⎜
⎝

⎛
++= ∑

=
+ * *    *  ˆ

1
iii1 ωY     (7) 
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Substituting (2) in (7) produces the final format of the rainfall driven flow 
formula: 

( ) qq

n

i
tt Tansigq µσβθα +⎟

⎠

⎞
⎜
⎝

⎛
++= ∑

=
+ * *    * * ˆ

1
iii1 ωPX    (8) 

 
The matrix product term: i * * ωPXt  of the above formula may be rewritten a 

summation format as follows: 
 

( ) qq

n

i j
ikjjtikt pxTansigq µσβθαω +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑ ∑ ∑

= = =
+ * *  ** ˆ

1
i

17

1k

22

1
,,,1   (9) 

 
Except for the data vector Xt, all input terms in Equation 8 (or 9) are computed 

once based on the historical modeling data set. The prediction of flow target proceeds in a 
feed forward manner where the antecedent predicted flow value is used as part of the 
input vector Xt for the next time step flow prediction.  Figure 3 presents a schematic 
diagram of the model developed above.  Results for the mode are presented in the 
following section.  
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Figure 3. Schematic diagram of the ANN for the rainfall driven formula 
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4) RESULTS 
 
The modeling data (1965-1989) were partitioned, standardized, and transformed 

to their first 17 principal components as described earlier.  The ANN was trained using 
the transformed data according to the procedure presented in the preceding section. 
Verification data (1984-1989) was used to stop training early if the network performance 
on the modeling data failed to improve, remained the same, or deteriorated for a number 
of consecutive iterations (5 iterations were found to provide good results in this study). 
Given the nonuniqueness of the optimization problem, many combinations of training 
and network initialization parameters can provide different, but equally probable, 
solutions with equally low performance function (MSE) scores.  For this purpose, 5000 
ANN simulation sets (i.e., development, verification, and validation) were performed for 
controlled random initialization and training parameter values.  The criteria for selecting 
a few of these sets were to maximize prediction correlation during the modeling and 
validation periods, while minimizing their differences (i.e., as similar and as high 
correlation values as possible for the modeling and validation periods).  With other 
measures considered such as mean square error, global bias, and negative value 
occurrence, one set was selected for this study. Detailed statistics of this set are presented 
in Table 4. The rest of these sets were retained for subsequent uncertainty analysis. 

 
Table 4.  Comparative statistics for the training and the validation periods of 
 the selected RDF.  Except for correlation, all units are in ac-ft/week.  
 Correlation BIAS STD MSE 
Development 0.88255 443.6756 8222.09 8848.089
Validation 0.88678 612.999 11178.79 12899.83

 
Given the selected RDF, two applications are considered in the subsequent 

subsections.  The first application is the transfer of the RDF from the proprietary 
MATLAB to a portable EXCEL application.  The second application is to present the 
model performance during the modeling and validations periods. A Numerical example 
of flow prediction for the week 1/30/2004 to 2/6/2004 is provided in Appendix C. 

 
4.1) Model transfer from MATLAB to Excel 

 
To eliminate proprietary software portability, and to make the formula, user 

friendly, portable, and as transparent as possible, model developed under MATLAB 
environment was transferred to portable EXCEL multiple tab spreadsheet.  As seen in 
Figure 4, the results are identical with minor differences at the peaks.  Due to the large 
number of parameters and data transformation involved in the computation, numerical 
approximations will likely result in some differences particularly at the high flow values. 

 
4.2) Model Performance 

 
Model performance during the modeling and validation periods is presented.  The 

formula robustness is tested and the annual, wet season, and dry season flows are 
compared. Uncertainty analysis is then presented. 
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While it is expected to have a good model performance during the modeling 
period since this is the data used to estimate all model parameters, it is desired to present 
the model performance during that period.  The prediction proceeds in a feed forward 
manner, where antecedent predicted flow is used as part of the input for the current time 
step. Figure 5 shows the predicted flow and NSM simulated flow target time series 
during the modeling period.  Notice that the model reproduces the time series troughs and 
peaks reasonably well except in the dry season of 1986-1987 and the first half of the dry 
season 1987-1988 with significant flow target overestimation.  Frequency and magnitude 
of negative prediction of the modeling and verification periods are presented in Table 5. 
Given an average NSM flow of 20,000 ac-ft/week, and a maximum flow of 110,000 ac-
ft/week during the modeling period, the negative occurrence frequency and values in 
table 5 is fairly insignificant.  Therefore, forcing the prediction to be non negative in real 
time implementation will unlikely introduce significant positive bias.  Further tweaking 
of the formula parameters outside the ANN optimization algorithm may result in 
reduction of the negative occurrence frequency and magnitude on the expense of running 
the risk of formula over-fitting. 
 
Table 5.  Negative prediction occurrence range and the corresponding frequency 
 NSM Flow 

 Average 
ac-ft/week 

NSM Flow 
 Maximum 
ac-ft/week 

Range 
ac-ft/week 

Frequency: 
events/total points 

-2,185  to -1,000 18 out of 1300 Development 
Period: 1965-1989 

20,274 
 

108,196 
 -1,000 to 0. 22 out of 1300  

-2,731 to -1,894 4 out of 572  Validation 
Period: 1990-2000 

33,366 
 

127,853 
 -1,000 to 0. 7 out of 572  

 
4.2.1) Weekly Flow prediction  

 
Figure 6 shows a scatter plot (along with trend lines) between the NSM flow 

target and the predicted flow target during the modeling period.  The correlation 
coefficient for the modeling period is 0.88.  Forcing the intercept to zero does not change 
the correlation results. 

 
Figure 7 shows the predicted flow and NSM simulated flow target time series 

during the validation period.  To allow for independent performance from the modeling 
period, the flow target is initialized to the NSM flow target on January 5, 1990.  The 
model proceeds forward as explained earlier.  The model seems to generalize reasonably 
well by capturing the majority of the peaks and troughs of the newly introduced data set.  
Out of 572 prediction points, there are 11 negative prediction events with the values 
presented in table 5 above.  Given NSM flow average and maximum of 33,000 ac-
ft/week and 127,000 ac-ft/week respectively for the validation period, the negative events 
are insignificant. 

 
Figure 8 shows a scatter plot (along with trend lines) between the NSM flow 

target and the predicted flow target during the validation period.  The correlation 
coefficient for the modeling data is 0.89; compared to 0.88 in the modeling period.  By 
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forcing the intercept to zero, the correlation remains the same.  The results in Figure 7 
and 8 indicate that the model generalized well during the period of 1990-2000 where the 
statistics of the data are significantly different with about 65% increase in the NSM flow 
average (see Table 3).  This gives confidence in future model application beyond the 
modeling and validation periods. 

 
To test the model robustness when the flow is reset at different dates, the RDF 

was applied to the validation data with 5 different resetting dates (see Figure 9).  The 
dates were selected where the model performance was relatively poor to check the model 
adaptability to adjust from its poor performance once the flow is initialized to the NSM 
flow.  There are two observations:1) the model matches the NSM flow much better, and 
2) The model converges completely to its original line (the line without resetting) after 
few months  This is not to suggest to reset the model when there is a poor performance 
(in fact this is not possible in real time), but rather to demonstrate the model long term 
robustness regardless of the flow initialization and or poor local performance. 

 
4.2.2) Seasonal and annual Flow prediction  

 
Figures 10 through 12 show NSM and predicted flow targets for annual, wet 

season, and dry season respectively.  Result statistics are shown in Table 6. The average 
NSM and RDF predicted flow volumes are almost identical over the modeling period for 
each of the annual, wet and dry seasons.  There is 5% overestimation of the average 
annual flow during the validation period with 4 % underestimation in the wet season and 
10% overestimation in the dry season.  Given the significant flow increase in the 
validation period (65%), the flow average matching during that period is considered very 
good.  Standard deviation of the RDF prediction is similar to the NSM in the modeling 
period and is higher by 20% in the validation period. 

 
Table 6. NSM and RDF seasonal flow average and standard deviation in (ac-ft/week). 
   Annual Wet Dry 

NSM 1,054,048 555,212 497,186 Modeling 
period RDF 1,077,101 559,978 514,711 

NSM 1,739,176 831,286 983,144 
Average 

Validation 
period RDF 1,822,676 797,680 1,105,287 

NSM 643,100 355,538 412,455 Modeling 
period RDF 603,596 310,036 393,839 

NSM 885,710 369,458 562,155 
Standard 
Deviation Validation 

period RDF 1,093,354 487,823 641,011 
 

4.2.3) RDF uncertainty  
 
As explained at the beginning of this section, 5000 simulations were performed 

for different sets of ANN architecture initialization and training parameters.  There are 
3700 model scenarios where the correlation between the modeling and the validation 
periods is greater than 80%.  Such scenarios were retained for subsequent uncertainty 
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analysis.  The 5% , median, and 95% of weekly flow predictions out of such plausible 
realizations represent 90% confidence band encompassing the median line for the model 
performance. The RDF and NSM lines ideally should be encompassed within the band 
and be as close as possible to the median. In reality this is rarely true due to the model 
uncertainty.  For a given week, the width of the uncertainty band is a measure of the 
model estimation variance, and the failure to encompass the NSM line within the band is 
an indication of the model bias.  Also, the median is not necessary the best estimator of 
the data unless the uncertainty band evenly encompasses the NSM line.  Furthermore, the 
median does not necessarily coincide with the RDF line because the RDF line represents 
one ANN realization while the median represents the median across all 3700 realizations.  
The confidence in prediction is high when the band is narrow and the NSM line is 
encompassed, and it is low when the band is wide and the NSM line is missed.  A wide 
band with missed NSM line is an indication of loss of information due to the fact that all 
data contributing to the prediction are not included.  Figures 13a through 13g show the 
90% confidence band, median, NSM, and the RDF lines from 1965 through 2000.  The 
following are specific observations from these figures. 

1) Given a narrow uncertainty band and given NSM and RDF lines within that band 
during low flows and transition to and from high flows, there is a high degree of 
confidence in the RDF prediction in these cases. 
2) High flow prediction has a wide uncertainty band that encompasses both NSM 
and RDF prediction lines most of the time.  
3) Events where the 90% confidence band missed and underestimated the NSM line 
are in the second half of 1966, the first half of 1980, and the second half of 1991.  
Events with overestimated missed NSM line are weeks of the dry season 1986/1987, 
second half of dry season of 1987/1988, wet season of 1995, and dry season of 
1997/1998.  In general there are 440 events (23%) where the 90% confidence missed 
the NSM line.  Such an increase beyond the 10% zone during the validation period is 
attributed partially to the inventible way rainfall data were obtained.  Also, including 
more rainfall information, and/or further parameter tweaking may bring this 
percentage closer to 10%. 

 
5) SUMMARY 

 
In this study, a new rainfall driven formula has been developed to provide real 

time prediction for natural flow targets to Shark River Slough.  Six rainfall locations and 
one PET location were the input data used in this study.  Flow target for a given week is 
predicted using weekly data over the preceding 6 weeks in addition to the flow target 
predicted for the previous week.  Input data were partitioned into a modeling period 
(1965-1989) and a validation period (1990-2000).  The modeling period was used to 
develop and verify the model (verification portion of the data is used to prevent the 
network from overtraining), while the validation period was used to validate the model. 
Principal component analysis was applied to the modeling set to reduce the data 
dimensionality to its first 17 components.  A feedforward Levenberg-Marquardt 
backpropagation Artificial Neural Network with one hidden layer and one output layer 
was adopted.  The network architecture and training parameters were identified for ANN 
training.  A set of 5000 ANN training, verification and validation simulations for 
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different network parameter values were performed to select an optimal set of weights 
and biases and to provide quantification of model uncertainty. The developed RDF was 
applied to the modeling, validation, and real time data.  Detailed results of the RDF 
applications were also presented. 

 
In this study, there was emphasis of the model ability to generalize, i.e., to 

provide satisfactory prediction beyond the modeling data.  While some trained ANNs 
provided predictions with correlation as high as 95% during the modeling period, they 
did not provide as high correlation during the validation period.  The best correlation 
balance was obtained at correlation values between 0.85 and 0.90. The finally selected 
ANN for the RDF produced 88% correlation for the modeling period and 89% correlation 
for the validation period.  The RDF appears to generalize very well during the validation 
period which is significantly wetter than the modeling period.  The RDF provides 
reasonable prediction of the annual, wet, and dry season flow volume.  The RDF has also 
exhibited robust behavior regardless of when and where the flow target is initialized.  

 
During the course of this study, many selection decisions were made based on past 

experience and trial and error processes.  The use of principal component analysis was 
useful in eliminating most of the white noise from the data by eliminating the top ½ % 
variability and hence increasing the ANN training efficiency.  The selection of a simple 
efficient ANN architecture was a trial and error process that found it reasonable to use 
ANN with 10 node hidden layer and one node output layer.  Identification of unnecessary 
parameters/weights to achieve parsimony was not an easy process as explained earlier. 
While good generalization indicates a good fit it does not guarantee a parsimonious 
model. The generation of 5000 sets of ANN training, verification, and validation with 
variable network initialization and training parameters was a method to characterize the 
behavior of the network for 5000 optimized solutions. The product of this exercise is a 
quantification of the prediction uncertainty due to model parameters.  The uncertainty 
band presented in this study can be used to provide the RDF with a range of flow target 
prediction that can be considered a “green zone” of non adversary regulatory releases. 

 
Future work on the RDF may add improvements in several aspects.  A major 

challenge in this study was the selection of the right predictors (input variables), the right 
lags, and the right partition.  The addition of noncontributing predictors impedes effective 
ANN training while the omission of contributing predictors results in information loss.  
This is evident in a few events where the uncertainty bands have missed the NSM flow 
completely.  While the results in this study prove to a large extent the effectiveness of the 
data selection made, there is a room for improvement by pursuing more formal analysis 
(as opposed to trial and error) in this selection.  A more efficient selection of ANN 
architecture and training parameters may be made as more data, techniques, and 
understanding become available.  There is a lot to be done for model uncertainty and 
there is a need to quantify uncertainty of flow target conceptualization, current and future 
weather conditions.  A simple real time uncertainty quantification remains a challenge. 
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Flow target prediction using Matlab and repeated by EXCEL
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Figure 4.  Comparison of Flow target prediction between MATLAB and EXCEL 
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Figure 5.  Predicted and NSM flow targets during the modeling period. 
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Predicted flow target vs NSM flow target 
Modeling Period
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Figure 6. Scatter plot of predicted versus NSM flow targets and trend lines during the 
modeling period. 
 

Predicted flow target vs NSM flow target
flow initializationon 1/5/90

0

20000

40000

60000

80000

100000

120000

140000

19
90

19
90

19
91

19
91

19
92

19
92

19
93

19
93

19
94

19
94

19
95

19
95

19
96

19
96

19
97

19
97

19
98

19
98

19
99

19
99

20
00

20
00

ac
-ft

/w
ee

k

NSM
"1/5/1990"

 
Figure 7.  Predicted and NSM flow targets during the validation period. 
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Predicted flow target vs NSM flow target
flow initialization on 1/5/1990
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Figure 8.  Scatter plot of predicted versus NSM flow targets and trend lines during the 
validation period. 

Predicted flow target vs NSM flow target
for different flow initialization dates
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Figure 9.  Predicted flow targets initialized at 5 different dates.  
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Annual flow in ac-ft/year
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Figure 10.  Predicted and NSM annual flow target  
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Figure 11.  Predicted and NSM wet season (June-October)  flow target  
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Dry Season total flow in ac-ft/year
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Figure 12.  Predicted and NSM dry season (November-May) flow target  
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NSM, RDF, and 90% Confidence Band and its median
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Figure  13a.  90% uncertainty bands around NSM and predicted flow targets for 1965-1969. 
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NSM, RDF, and 90% Confidence Band and its median
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Figure  13b.  90% uncertainty bands around NSM and predicted flow targets for 1970-1975. 
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NSM, RDF, and 90% Confidence Band and its median
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Figure  13c.  90% uncertainty bands around NSM and predicted flow targets for 1976-1980. 
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NSM, RDF, and 90% Confidence Band and its median
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Figure 13d.  90% uncertainty bands around NSM and predicted flow targets for 1980-1985. 
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NSM, RDF, and 90% Confidence Band and its median
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Figure 13e.  90% uncertainty bands around NSM and predicted flow targets for 1985-1990 
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NSM, RDF, and 90% Confidence Band and median
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Figure 13f.  90% uncertainty bands around NSM and predicted flow targets for 1990-1995. 
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NSM, RDF, and 90% Confidence Band and median
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Figure 13g.  90% uncertainty bands around NSM and predicted flow targets for 1995-2000 
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APPENDIX A 
 

The first 17 Principal Component coefficient Matrix P.  
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 -0.013 0.284 -0.082 0.279 -0.888 0.174 0.006 0.096 -0.017 0.027 -0.018 0.031 -0.032 0.018 -0.034 -0.048 0.013 
2 0.120 0.211 -0.033 0.514 0.206 -0.042 0.024 -0.018 0.005 -0.023 -0.003 0.008 -0.019 0.041 0.026 -0.009 -0.087 
3 -0.202 -0.247 -0.165 0.191 -0.049 -0.321 0.465 -0.029 -0.071 0.143 -0.305 -0.136 0.305 0.305 -0.393 0.062 0.015 
4 -0.210 -0.248 -0.166 0.169 0.053 0.315 -0.291 0.161 0.251 -0.080 0.442 0.149 0.500 0.003 -0.295 -0.031 -0.016 
5 -0.214 -0.240 -0.162 0.156 0.075 0.357 -0.429 -0.054 -0.101 0.058 -0.531 -0.192 -0.238 0.170 -0.064 0.002 0.036 
6 -0.219 -0.258 -0.154 0.190 -0.068 -0.260 0.139 -0.174 -0.353 0.151 0.385 0.137 -0.101 -0.098 0.206 -0.039 -0.060 
7 -0.233 -0.256 -0.170 0.179 -0.024 0.023 -0.179 -0.192 -0.252 0.105 0.083 0.063 -0.183 -0.194 0.238 0.028 0.040 
8 -0.203 -0.248 -0.172 0.170 -0.005 -0.075 0.289 0.341 0.536 -0.376 -0.093 -0.029 -0.296 -0.171 0.269 -0.019 0.014 
9 0.149 0.229 -0.002 0.480 0.224 -0.028 -0.030 0.006 0.014 -0.001 0.012 -0.005 -0.016 -0.017 0.028 0.003 -0.055 

10 -0.206 0.021 0.338 0.093 -0.050 -0.443 -0.317 0.099 0.143 0.182 -0.192 0.272 -0.089 -0.443 -0.351 0.047 -0.003 
11 -0.217 0.022 0.330 0.066 0.062 0.316 0.281 0.110 -0.288 -0.111 0.116 -0.519 -0.033 -0.451 -0.240 -0.049 0.027 
12 -0.220 0.024 0.318 0.057 0.103 0.417 0.344 -0.130 0.043 0.105 -0.136 0.611 -0.101 0.072 -0.032 -0.001 -0.033 
13 -0.225 0.018 0.341 0.088 -0.077 -0.194 -0.201 -0.236 0.342 0.108 0.158 -0.386 -0.007 0.226 0.119 -0.015 -0.060 
14 -0.239 0.027 0.343 0.077 -0.022 0.100 0.086 -0.297 0.193 0.067 0.077 -0.073 0.077 0.242 0.243 0.033 0.077 
15 -0.210 0.020 0.334 0.072 0.018 -0.167 -0.168 0.505 -0.425 -0.364 -0.041 0.116 0.143 0.346 0.225 -0.015 0.024 
16 0.213 0.173 -0.021 0.415 0.193 0.022 0.002 -0.001 -0.013 0.063 0.018 -0.031 0.031 -0.023 -0.013 0.037 0.148 
17 -0.234 0.269 -0.163 -0.044 0.043 -0.122 -0.037 -0.372 -0.021 -0.419 -0.066 0.081 0.096 -0.074 -0.077 -0.375 0.566 
18 -0.240 0.258 -0.161 -0.095 0.096 0.025 0.031 0.287 0.034 0.334 0.149 -0.038 -0.115 0.074 0.031 0.518 0.551 
19 -0.242 0.249 -0.158 -0.095 0.139 0.008 0.039 0.284 0.045 0.442 -0.084 -0.047 0.103 -0.026 0.169 -0.626 -0.114 
20 -0.248 0.272 -0.164 -0.058 0.027 -0.019 -0.015 -0.193 -0.029 -0.273 -0.163 0.019 0.220 -0.154 0.071 0.398 -0.322 
21 -0.257 0.267 -0.166 -0.067 0.045 0.020 -0.007 -0.019 -0.002 0.067 -0.112 -0.046 0.245 -0.158 0.224 0.142 -0.324 
22 -0.236 0.264 -0.163 -0.082 0.097 -0.049 -0.014 -0.003 -0.024 -0.149 0.301 0.010 -0.529 0.323 -0.429 -0.056 -0.320 

 



 

 32

APPENDIX B 
 

ANN Hidden layer weight matrix Ω and bias vector Α 
 1 2 3 4 5 6 7 8 9 10

1 0.15957 0.038638 -0.04779 0.040766 -0.15566 -0.01155 -0.08107 -0.01705 -0.01149 0.046406
2 -0.34459 -0.13055 -0.08866 -0.1442 0.25594 -0.09952 0.10276 0.89504 0.1246 0.1827
3 -0.36377 -0.00528 0.002184 0.049159 -0.05911 -0.01603 -0.01456 0.30374 -0.1123 -0.03602
4 -0.02458 -0.1888 -0.0701 -0.13494 0.073944 -0.19072 0.23728 1.4265 0.20154 -0.09212
5 0.053926 0.38304 0.27019 0.3209 -0.7961 -0.0971 -0.37481 -1.0738 -0.4732 -0.55135
6 0.33402 -0.14417 -0.06394 -0.11768 0.014023 -0.22435 -0.00332 0.49459 0.074143 0.37494
7 0.21983 0.066179 -0.01656 -0.05959 0.38465 0.082587 -0.10148 0.065157 -0.26692 0.11548
8 -0.32269 -0.02581 -0.02295 0.03531 -0.09286 0.06375 0.11726 -0.04952 0.20158 -0.46863
9 -0.06532 0.052307 -0.04414 0.070505 -1.1939 0.042399 -0.03195 0.19079 -0.03013 0.074999

10 0.22537 -0.01522 0.028505 -0.06446 0.78575 -0.12499 0.1397 -0.58851 0.004614 0.38477
11 0.11712 -0.07325 -0.00968 -0.00955 0.76359 -0.05403 0.026946 -0.35445 -0.08617 0.42027
12 0.049564 0.033295 0.067016 0.006441 0.13763 0.3777 0.018545 0.34434 0.11417 -0.19321
13 0.056784 -0.08614 0.032133 -0.09347 0.61869 -0.39251 -0.04088 -0.49365 0.12514 0.34044
14 -0.05239 -0.08142 -0.00438 -0.1435 -0.79278 -0.23731 -0.19322 0.15223 -0.17983 -0.28357
15 0.31716 0.12885 -0.02857 0.050985 -0.66503 -0.00609 0.050679 0.18627 -0.22259 -0.47248
16 -0.23685 -0.05021 -0.08761 0.20341 0.33264 0.47941 -0.10138 -0.28271 -0.3285 0.31807
17 0.18162 0.16293 0.005761 0.30327 -0.23751 0.47807 0.37785 -0.12292 0.6398 -0.14358

bias 1.7059 1.7926 -0.62716 -0.08959 0.85179 0.068473 -0.46089 -1.2735 1.3409 -2.7044
 

ANN output layer weight vector θ and bias term β.  
 1 2 3 4 5 6 7 8 9 10
 -0.02228 -1.7765 -1.1622 -1.1063 -0.04118 0.31604 0.6667 0.003239 0.24678 -0.3036

bias 0.7145   
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APPENDIX C 
 

Numerical example of flow target prediction  
for week 1/30/2004 – 2/6/2004 

 
Input data:  

PET and rainfall data for the week 1/23/04 through 1/30/04 Predicted flow 
on 1/23/2004 PET S336 3A-S 3A-SW S12D 3AS3W3 S9 
36862.9 -0.58228 2.84 1.94 2.43 2.85 3.19 1.84 

Flow units in ac-ft/week; PET and rainfall in inches/week 
 
Standardize the data  

Use Equation 1 to standardize:  
• Flow predicted on 1/30/2004  0.88676 
• PET and Rainfall for 3 week lags (the third lag is the average of lags 3, 4, 5, and 

6) 
Week PET S336 3A-S 3A-SW S12D 3AS3W3 S9 

1/30/04 2.108122 1.307876 0.946734 1.24923 1.410998 1.974665 0.757 
1/23/04 1.165716 -0.62666 -0.62195 -0.70376 -0.6267 -0.65156 -0.64442 

12/26/04 
1/2/04, 
1/9/04, 
1/16/04 

1.568855 -0.89816 -0.86907 -0.9328 -0.83229 -0.82502 -1.06676 

 
Transform data to its first 17 Principal Components 
 Use Equation 2, and the Principal Component Coefficient Matrix in Appendix A, 
compute the first 17 principal components of the data set. 
 
 1 2 3 4 5 6 7 8 
 1.26129 -2.19193 -1.84856 4.006353 -0.30154 0.096754 -0.15137 -0.29079
9 10 11 12 13 14 15 16 17 
-0.58907 0.401413 -0.05308 -0.03594 -0.08637 -0.06467 0.240627 0.120437 0.02755 
 
Apply ANN hidden layer weights and biases 

Use equation 3 as applied to equation 9 and hidden weights and biases from 
Appendix B, compute the output of the ANN hidden weights (10 values) 

0.9981 0.8502 -0.6862 -0.4363 0.9146 -0.4244 0.3647 0.9619 0.9730 -0.9953
 
Apply ANN output layer weights and bias 

Use Equation 4 as applied to equation 9 and the output layer weights and bias in 
Appendix B, compute the flow for the week starting on 2/6/2004   

Predicted weekly flow target for week starting on 2/6/2004 is 40455.7 ac-ft/week 
 



 

 34

 


